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Abstract

The p Choices operating system splits the microkernel into a machine-independent part and a machine-
dependent sub-microkernel. The sub-microkernel, called the nano-kernel in uChoices, encapsulates the
hardware and presents an idealized machine architecture to the rest of the system. Higher levels of the
system access the nano-kernel through a single interface. Nano-kernels are useful because they signif-
icantly enhance portability of the entire microkernel. The interface provided by the idealized machine
architecture of the g Choices nano-kernel is a good match for constructing higher-level abstractions in the
machine-independent microkernel. In the pChoices nano-kernel, we have fully decoupled the nano-kernel
from all higher-level abstractions. Thus, it should be possible to construct many different operating sys-
tems on top of the nano-kernel. The pChotices nano-kernel is built as an object-oriented framework. The
framework guides porting to new hardware platforms, and allows the specialization of its components for
efficient, machine-specific implementation.

1 Introduction

A prime concern in modern operating systems is system portability across different hardware platforms.
Operating system implementors have migrated from coding in pure assembler to writing most parts of
an operating system in high level languages such as C[11, 9]. This enhances portability by reducing the
amount of machine-dependent assembler that needs to be rewritten for every new port of the operating
system.

Coding in high level languages has indeed made modern operating systems code much clearer, more
flexible, and easier to maintain. However, significant amounts of machine-dependent details remain in
even the high level portions of the operating system. Such machine dependencies may appear in many
major subsystems of an operating system, such as the memory management or process subsystems.
The virtual memory subsystem requires machine-dependent code for handling the hardware memory
management unit (MMU). The process subsystem requires both the MMU code and code for handling
processor context saves and restores. Interrupt handling is another case in point.

In the uChoices operating system[2, 10], we have split the kernel into two portions. The machine-
dependent nano-kernel encapsulates the physical hardware and provides hardware support for the rest
of the machine-independent microkernel. It provides the microkernel with the needed mechanisms for
implementing higher-level abstractions, such as processes, timers, and virtual memory. The nano-kernel
is not a wrapper around assembler routines. Because pChoices is an object-oriented operating system,
the nano-kernel is built as a framework of classes that captures the essential properties of the low-level
hardware, presenting a useful interface to the higher levels of the kernel in a machine-independent way.
It provides the building blocks for constructing kernel abstractions.

Our thesis is that sub-microkernels for hardware support, such as the pChoices nano-kernel, greatly
benefit operating system construction. We enumerate the reasons below. They are useful because they
significantly enhance portability. The object-oriented framework upon which the pChoices nano-kernel
is based guides and simplifies the process of porting the operating system to new hardware platforms.
We describe the port of the nano-kernel to two highly dissimilar platforms: the first an emulation of
a symmetric shared memory multiprocessor on top of Unix, and the second to the Sun SPARCstation.



The decomposition of the puChoices kernel into a machine-independent part and a sub-microkernel has
allowed us to factor out all hardware dependencies in the various subsystems. This leads to easily
portable higher levels. We also show that the interface provided by the idealized machine architecture of
our nano-kernel is a good match for constructing the higher-level abstractions in the machine-independent
microkernel. Because a good match is possible, a careful design of the sub-microkernel can negate any
harsh performance penalties. In addition, we have fully decoupled the pChoices nano-kernel from all
higher-level abstractions. Thus, it should be possible to construct many different operating systems
on top of the sub-microkernel. Since most operating systems deal with the same abstractions at the
machine-independent level (processes, VM, etc.), a single idealized interface can suit many different
operating systems. If a standard were agreed upon, the operating system community could exchange
sub-microkernels and vastly extend the range of our supported hosts. Finally, decomposing an OS kernel
in this manner led us to fully separate the truly machine-dependent components from the machine-
independent abstractions used by operating systems.

In the next section, we discuss the uChoices nano-kernel in detail. Then in section 3, interface issues
are considered, and we argue that the nano-kernel interface can indeed suit the needs of most general
purpose operating systems. The nano-kernel has been ported to an emulation on top of Solaris and
natively to the Sun Sparc, and this is described in section 4 We present performance measurements of
nano-kernel for two ports in section 5. Related work and the conclusion is given in section 6 and section 7.

2 Nano-Kernel

puChoices is a redesign of the original Choices object-oriented operating system[1]. The operating sys-
tem is composed of independent modules. Modules are implemented as independent object-oriented
frameworks that interact through well defined interfaces. Within a framework, the subclassing of com-
ponents provides the ability to customize its various parts to support different implementations and
optimizations.[8]. Modules interact only through well-defined interfaces. Code reuse through inheritance
is used within modules internally, and interface reuse through inheritance of abstractions is used between
sub-frameworks.

The pChotces nano-kernel is the hardware support module. The nano-kernel encapsulates the data
representations and algorithms associated with the instruction set, and virtual address mechanisms of
the computer. The g Chotces nano-kernel is composed of:

e the boot component, responsible for booting and initializing the operating system.
e the processor component, responsible for managing physical CPUs.

e the memory management component, responsible for managing the MMU, TLB, and virtual address
mappings.

e the exception component, responsible for handling hardware traps and interrupts, scheduling the
software handlers for these events, and for providing a machine-independent interface to these
services.

e the boot console component, responsible for console output at boot time.
o the debugger component, responsible for debugger hooks in the kernel.

e the interface component, responsible for providing a single interface for accessing the hardware
support module

The code structure for the nano-kernel organizes the above components into four groups:
Framework
Processor Dependent

Machine Dependent

e

Interface

2.1 Framework

The Framework group holds the basic, abstract classes in the nano-kernel for the pChoices idealized
machine architecture. These abstract classes reify hardware entities, such as the processor (class CPU)
and memory management unit (class MMU), as well as events, such as interrupts (class Exception) and
services, such as locks (class Lock).



2.1.1 Exceptions

The abstract class Exception reifies the interrupts that are generated by the hardware. Exception is
subclassed in the Processor Dependent and Machine Dependent parts of the nano-kernel for exceptions
particular to the target machine’s processor and machine type. Table 1 shows the abbreviated methods

Methods Description
Instance stack Stack an exception on another
raise Subclass-defined: called when interrupt occurs
Class setExceptionHandler | Set handler for machine-independent type

Table 1: Methods for abstract class Exception.

exported by the Exception class. The subclass-specific constructor registers a new Exceptionobject in a
subclass-specific way, binding it to the hardware such that the raise method is called when an exception
of that nature occurs. Raise is redefined by concrete subclasses. Exceptions may be stacked through
the stack method. In this case the raise method will be called in turn for each stacked Exception
object when the interrupt occurs. Six machine-independent exception types can be registered with the
Exception class through the setExceptionHandler class method. The machine-independent exception
types correspond to the exceptions widely caught by operating system kernels. These are:

1. MemoryException, for memory access violations,

2. IllegallnstructionException, for invalid instructions,
3. FloatingPointException, for arithmetic errors,
4

. TimerException, for timer expirations,

5. FreeRunningTimerException, for free running timer expirations,
6. IDException, for IO device exceptions.

Each machine-independent exception type may have a hardware-dependent vector associated with it. In
most cases, the hardware vector is known in the processor dependent or machine dependent subclass for
that exception type. For example, the SPARC processor uses vector 26 for timer expirations. The vector
argument is usually required for the type I0Exception, as different 1O devices may raise interrupts on
different vectors. When raise is called on an instance of a concrete subclass of Exception, it converts
the hardware interrupt to which it is bound into a call to the user installed exception handler for its
machine-independent type.

2.1.2 Locks and CPUs

Class Lock in the nano-kernel framework implements a mutual exclusion lock between CPUs. Locks form
the basis on which higher level abstractions such as semaphores may be constructed as part of a process
management subsystem. Locks function in cooperation with the CPU class (table 2), which implements
an abstract protocol for handling interrupts and other CPU related mechanisms.

An opaque handle of type InterruptStorageis exported by the concrete subclass of CPU. It represents
machine-dependent interrupt mask information.

| Method | Description |

startProcessors Start all processors running

disableInterrupts | Disable interrupts on this CPU
restoreInterrupts | Restore interrupts on this CPU

addToInterruptMask | Fill mask for machine-independent type

spinMutex Spin lock
releaseMutex Release spin lock

Table 2: Methods for abstract class CPU.

CPU exports the method:
void addToInterruptMask(InterruptStorage& mask,
ExceptionType type,
int vector);



By calling the above method, a client of CPU may construct an interrupt storage mask by specifying
the machine-independent exception types and associated hardware-dependent vectors (if necessary). In-
terrupt storage masks are acted on only by the concrete subclass of CPU, thus on hardware that only
supports the masking of interrupt levels, InterruptStorageis an integer value, and addToInterruptMask
sets its value to the maximum of its current value and the value corresponding to the associated machine-
independent exception type.

| Methods | Description |
Lock(InterruptStorage& mask) | Create a lock with an interrupt mask
acquire Acquire a lock
release Release a lock

Table 3: Methods for class Lock.

A mask is passed as an argument to the constructor of Lock. The mask is used to specify what
interrupts to mask out when the lock is acquired. On calling acquire, the lock first masks off the
interrupts by calling disableInterrupts on the CPU class. It then uses spinMutex on the CPU class to
acquire a spin lock. The reverse procedure of releaseMutex followed by restoreInterrupts is used to
relinquish a spin lock. Methods spinMutex and releaseMutex are implemented by the concrete subclasses
of CPU.

2.1.3 Memory Management

Tables 4 and 5 illustrate the methods used by the memory management framework for classes Address-
Translation and MMU respectively.

| Methods | Description |

addMapping Add a mapping from a VM address into a chain of pages
removeMapping Remove VM mapping
changeProtection | Change VM protection for VM range
changeStatus Change status of mappings for VM range
reference Get reference information

Table 4: Methods for class AddressTranslation.

| Methods | Description
enable Enable the MMU
activate Activate an AddressTranslation

flushCache | Flush the MMU cache for an address range

Table 5: Methods for class MMU.

VM mappings for a VM address space is constructed by adding chains of physical pages into an
instance of AddressTranslation. The collection of pages in an instance of the class represents a virtual
memory domain.

AddressTranslation is an abstract class. Methods on the class allow one to add or remove map-
pings to physical pages at different addresses, as well as affect the protection levels of the pages in
the translation. Although the protocol is specified by the abstract class, the actual implementation
is left up to a concrete subclass. Concrete subclasses implement the actual translation in an efficient,
machine-dependent manner.

Class MMU implements an abstract protocol for controlling hardware memory management units.
Instances of class MMU encapsulate the memory management units on the machine. MMUs operate on
instances of the AddressTranslation class. The basic methods exported by the MMU interface allow one
to enable its operation, activate a given address translation and flush the MMU cache for an address
range. A virtual memory domain is mapped when the activate method of an instance of class MMU is
invoked with the translation.



2.1.4 Processor Contexts

The ProcessorContext class gives the higher level microkernel the means to implement a process sub-
system, with methods to checkpoint and restore the running CPU thread. Processor contexts store the
state of the CPU, including the program counter, registers, interrupt mask information, stack pointers,
frame pointers and any other information that the CPU may need to restore a running task. The Pro-
cessor Dependent group implements the concrete subclass of ProcessorContext for specific processor
architectures. VM mappings are not included in processor contexts. Higher level process management
subsystems mamnage that information with instances of the AddressTranslation class (table 4).

| Methods | Description |

checkpoint | Save present CPU context
restore Restore previously saved context

Table 6: Methods for class ProcessorContext.

Two methods are exported, namely checkpoint and restore. The first saves the present context,
the other restores a previously saved context. The checkpoint returns 0 on the first call, and will appear
to return non-zero on being restored by another thread.

2.1.5 Console

The Consoleimplements a C++-like output stream. The machine-dependent group implements the actual
mechanics of writing characters to the output console. Output is required for debugging, thus we have
included a console at the lowest level of the nano-kernel.

2.1.6 System Configuration

| Methods | Description
number0fProcessors | Return the number of physical processors
pageSize Return the machine page size
physicalMemoryMap | Return a map of physical memory
bind Bind a key to a value
unbind Unbind a key from a value
lookup Lookup a value with a key

Table 7: Methods for class SystemConfiguration.

An instance of the SystemConfiguration abstract class allows the querying of system parameters such
as the number of processors, the machine page size, and amount of RAM. This is illustrated in table 7.
The bind, unbind and lookup methods permits the addition of miscellaneous configuration information,
which may be machine-dependent.

2.2 Processor Dependent and Machine Dependent

The Processor Dependent group contains implementations of abstract classes in the framework for par-
ticular processor architectures. For example, within ProcessorDependent, the subclasses for the SPARC
or MIPS processors may be found. The framework requires concrete subclasses for the abstract classes

e CPU,

e MMU,

e Exceptions,

o AddressTranslation, and
e ProcessorContext.

The Machine Dependent group contains subclasses for particular machines and specializations between
machines of the same processor architecture. The group holds concrete subclasses of the abstract classes
for



Console,

e MemoryAllocator,

e Exceptions,

e SystemConfiguration.

Specialized boot code for the machine is found here as well. Booting occurs in a machine-dependent man-
ner in the nano-kernel, and proceeds through nano-kernel initialization as specified in the abstract class
framework. The micro-level is entered through the invocation of a well-known entry point (KernelMain())
at the end of the nano-kernel’s initialization. Further interaction between the micro-level and the nano-
kernel occurs through the nano-kernel interface (discussed in section 3).

Porting from one machine to another is thus concentrated in realizing the concrete subclasses within
the Processor and Machine Dependent groups. The interactions between components in the nano-kernel
framework is already specified by the abstract classes in the Framework group. Our experience indicates
that the process of porting is simplified when one works within a well engineered framework of classes.

3 Interface Design

In the design of the nano-kernel interface, one must take care to craft it at the appropriate level. Too
abstract or “high” an interface restricts the flexibility of the machine-independent part of the kernel. Too
low an interface does not buy one very much, and may let machine-dependencies creep into the higher
levels. Related to this is what machine-dependencies may be factored out of the higher levels of the
kernel. We have taken care to design the nano-kernel such that useful, machine-independent mechanisms
are provided for constructing micro-level abstractions such as

e processor allocation and scheduling,

e process management and synchronization,

e physical and virtual memory management, and
e interrupt processing.

The Interface group holds the definition of the interface that the nano-kernel exports. We allow access
to the nano-kernel only through this interface. An abbreviated list of interface methods and descriptions
is shown in table 8.

One notices that the methods in the interface correspond closely to the methods exported by individual
classes in the nano-kernel framework. Rather than make the individual nano-kernel objects directly
available to the micro-level, we interpose an explicit interface between the higher levels and the nano-
kernel for the following reasons. First, the interface enforces module independence between the micro-
and nano-levels. No components are exported beyond the nano-kernel, only opaque handles. This
architecture decouples the dependence of the micro-level on the specific nature of the classes and objects
in the nano-kernel, permitting a high degree of evolutionary flexibility as the nano-kernel itself is changed
and extended in its lifetime. For example, locks in the nano-kernel can be changed without affecting the
rest of the system. Second, an explicit interface also permits us to capture and limit the way the nano-
kernel is accessed. The tight coupling of components within the nano-kernel requires that classes publish
methods that are used for communication between components in the nano-kernel, but are not essential
for the micro-level to know about. The interface prevents the micro-level from manipulating nano-kernel
objects in undesirable ways. Third, the interface may itself be extended to allow the aggregation in one
interface call to multiple nano-kernel calls. This particular object-oriented design pattern is called the
Facade[6].

The cost of an explicit interface is the overhead of one function call per invocation of the nano-kernel.

3.1 Suitability of the Interface

We suggest that the above interface is suitable for a wide range of general purpose operating systems.
Operating systems may differ, but most deal with the same abstractions:

e processes, process management and synchronization

Time-shared processor allocation is governed by all modern operating systems. In order to imple-
ment processor allocation, kernels require ways to catch timer interrupts, checkpoint the current
running context and switch to another context. Virtual memory mappings may or may not be



Method

Comment

cpuld Get id of current CPU
startProcessors Start all CPUs
cpuDisableInterrupts | Interrupts off this CPU
cpuRestoreInterrupts | Restore interrupt mask
addToInterruptMask Add machine-independent exception type to interrupt mask
timerOn Set timer value
newLock Get mutual exclusion lock
deletelock Delete mutex lock
lockAcquire Acquire the lock
lockRelease Release the lock
newContext Create a new processor context
contextCheckpoint Checkpoint to context
contextRestore Restore saved context
newTranslation Create a new address translation
addMapping Add a mapping to a translation
enable Enable a MMU for a CPU
addTranslation Add a translation to the MMU
changeProtection Change VM protection
changeStatus Change status bits
flushCache Flush MMU cache
reference Get reference bits for page
setExceptionHandler | Set a handler for a machine-independent exception type
physicalMemoryMap Get the map of physical memory
nunber0fProcessors Return number of CPUs
pageSize Return size of a page
lookup Lookup a value with a key

Table 8: Interface to the Nano-Kernel.

changed on a context switch. The nano-kernel supports a process subsystem by giving the higher
level the processor context, timer exception, and address translation components to work with. Fig-
ure 1 depicts the relationships between two processes in the same virtual memory space, together
with their associated processor context and address translation objects in the nano-kernel for the
wChoices operating system. Processes are represented as instances of class Process in the process
subsystem, and a virtual memory space is represented by an instance of class Domain in the VM
subsystem.

physical and virtual memory management

An operating system kernel must keep track of the allocation of physical pages and the virtual
memory mappings for various VM spaces. The nano-kernel does not impose any predefined memory
management strategy, but provides access to a physical memory map in the interface. In pChoices
the map is used in the microkernel to construct the Store, an allocator of physical memory pages.
VM mappings may be constructed through address translations in a machine-independent way. The
interface hides the details of address translations. The actual translations are stored by concrete
subclasses in efficient, machine-dependent implementations.

interrupt processing

While a multiplicity of interrupts may be generated and differ from one machine to another, most
operating systems are only interested in a very few at the micro-level. These were enumerated in
section 2.1.1. Thus we can provide a list of machine-independent types and construct the microker-
nel based on these. The mapping of machine-independent type to hardware vector is accomplished
by the concrete, processor or machine-dependent subclasses of Exceptionin the nano-kernel.

IO interrupts caused by IO devices cannot easily be cast into a machine-independent mold. In this
case, the nano-kernel provides an optional vector argument that its device driver clients may use in
order to register handlers. Since device drivers are inherently machine-dependent anyway, this does
not compromise the machine-independent nature of the rest of the interrupt processing interface.



Process VM
subsystem subsystem

Scheduler
L j‘_ -
I— — — — — —
TimeSlice ~
I TimerException Processor Processor \ </Address A
| Context / Context ) ' Translation )

AN _ RN _ o . _ o |

| Nano—Kernel — —— — |

e o ———— S S S S S S — — —

Figure 1: Nano-Kernel, Process and VM Subsystems, with two processes sharing the same VM space.

While the interface in its present form is sufficient for the current version of p Choices, other operating
systems may rely on extra machine-dependent features, for example, aggressive cache-line placement of
dynamically allocated objects. In this case the primary interface can be extended with a method that
invokes a nano-kernel allocator. The allocator would be specialized in the Machine Dependent group for
efficient placement on a particular target architecture.

4 Two Ports of the Nano-Kernel

The nano-kernel has been ported to two dissimilar platforms. The first provides an emulation of a
symmetric shared memory multiprocessor on top of the Solaris flavor of Unix. The second is a native
port to the Sun SPARCstation.

u VirtualChoices is an implementation of the g Chotces nano-kernel that emulates a symmetric shared
memory multiprocessor on top of Solaris. p VirtualChoices provides a convenient and robust prototyping
environment for testing and debugging design ideas in uChoices similar to VirtualChoices[3]. It has
a much faster edit-compile-test cycle, no need for dedicated hardware, and is compatible with native
implementations of g Choices. This section briefly presents the concrete subclasses that u VirtualChoices
supplies to implement p Choices. The CPU subclass in pu VirtualChoices is programmed with a UNIX pro-
cess. Additional CPUs are programmed as additional UNIX processes communicating via shared memory
and the underlying Solaris filesystem. On a multi-CPU machine true parallel execution can be achieved.
Locking is implemented with test-and-set or swap instructions in the SPARC instruction set. The MMU
is realized through the virtual memory environment of the Solaris process. The memory mapped file
facilities are programmed to emulate the manipulation of the AddressTranslation and a Solaris file
provides the representation of the pages of physical memory. Interrupts and traps in g VirtualChoices
are realized through the use of Unix signals. Signals bear a close resemblance to hardware interrupts
on physical processors and can be programmed to emulate interrupts. The signals are programmed by
registering handlers, catching signals associated with 1O, virtual memory, timers, instruction faults, etc.,
and by manipulating the Unix signal mask to mask and unmask interrupts.

The SPARC native port of the nano-kernel subclasses the same abstract classes in the nano-kernel
Framework for the SPARCstation. The higher levels of our microkernel, namely the Kernel, Process,
Virtual Memory, Timer, and Network subsystems, are the same between the two ports.

5 Performance

We measured the performance of several key functions in the nano-kernel. We also measured context
switching performance of the Process subsystem in uChoices. Process context switching relies on the
facilities provided by the nano-kernel, including the use of processor contexts and locks. The performance
is summarized in table 9 for u VirtualChoices on the Sparcstation 600MP, and the Sparcstation 2 in na-
tive mode. The percentages in parantheses indicate the overhead over similar operations in the original



Operation Time (us)
VChoices | Sparcstation 2

Lock acquire and release 59 (0.3%) 5.7 (7.5%)
Exception conversion 0.2 0.4
Context switch (kernel threads) || 348.4 (0.1%) 76.8 (1%)

Table 9: Nano-kernel performance measurements. Percentages indicate overhead compared to original

Choices.

Choices operating system. Lock acquistion and release in p VirtualChoices requires system calls to set the
process signal mask, but only requires interrupt masking for the native Sparcstation. Exception conver-
sion from hardware-raised interrupts to a machine-independent exception type is similar in both ports.
No comparable mechanism is available for comparison with in the orignal Choices. Context switching is
a higher-level function implemented by the Process subsystem and involves disabling interrupts, adding
the current process to one of several possible process queues, retrieving the next ready process from the
run queue, computing time slice residuals, switching the processor context, and restoring the previous
interrupt mask.

The overhead is low for calling interface functions directly, and negligible for context switching, a
higher level function composed out of nano-kernel primitives.

6 Related Work

There have been many attempts at defining minimal kernel services in modern operating systems. MIT’s
Exokernel[4] is intended as a minimal kernel that directly exposes the hardware capabilities of the ma-
chine, leaving traditional OS abstractions up to implementations in user-level libraries. Lipto’s[5] nugget
is a “truly minimal kernel”, managing low-level resource allocation mechanisms such as processor alloca-
tion, memory management and interrupt processing. Spring’s[7] nucleus is similar, supporting domains
(virtual address spaces), threads and doors (which handle object-oriented calls between domains).

The nano-kernel is at a lower level than all of these approaches. For example, in the Exokernel, user
programs or their libraries may request time slices from the Exokernel, thus processor allocation is di-
rectly controlled by the Exokernel itself and is not available for manipulation at higher levels. In contrast
to providing processor allocation, the nano-kernel provides the mechanisms for constructing processor
allocation strategies in a machine-independent way. Higher level process management subsystems may
register handlers to catch timer exceptions. Process objects may be constructed from combining refer-
ences to nano-kernel provided processor context and address translation objects. In contrast to providing
memory management, the nano-kernel provides the mechanisms for manipulating virtual address transla-
tions together with methods for enabling and disabling maps on the hardware MMU. In the nano-kernel
interrupt processing is split between a machine-dependent part handled by the Exception class together
with its concrete processor and machine-dependent subclasses, and a machine-independent part which
the higher levels refer to via machine-independent exception types.

The port of the nano-kernel to Solaris is similar to Nachos[12]. Nachos is a multithreaded operating
system simulated as a regular Unix process. It was developed for pedagogical purposes. p VirtualChoices
is different in that we use real OS code that is not stripped or simplified. u VirtualChoices also provides
multiprocessor support, with physical processors simulated as separate Unix processes. This allows
simulated CPU separate memory management capabilities. Application code is also not interpreted, and
page faults are caught through signal handlers for memory segmentation and bus violations. This provides
a more realistic simulation of hardware. p VirtualChoices supplies a complete prototyping environment
for our operating systems development.

7 Conclusion

The nano-kernel in pChoices is the hardware support module that localizes machine dependencies and
presents an idealized machine architecture to the rest of the operating system. It is entirely divorced
from the higher levels of the kernel. Efficient primitives are exported to the rest of the kernel so that
higher level operating system abstractions may be constructed. The nano-kernel mechanisms support the
construction of micro-level processor allocation, process management, synchronization, virtual memory



management, and interrupt processing strategies. Portability is enhanced since porting to a new machine
means working with a single, small, modular system. The framework defined by the abstract classes and
relationships in the nano-kernel guide and simplify the process of targeting new hardware. Higher levels
of a kernel are portable since there are no residual machine-dependencies.

We posit that many different operating systems may be constructed on top of the portable nano-
kernel. This is possible since the abstractions that most operating systems deal with are similar: process,
scheduling, virtual memory and interrupt handling. While the basic interface may remain the same, it is
likely that it will be extended to accomodate more machine-dependent features that operating systems
attempt to utilize.

Constructing the nano-kernel as an object-oriented framework has several advantages. First, the
abstract protocols and interactions between components in the nano-kernel framework are well specified
and are inherited by the different ports of the system. This makes porting the OS to another machine
considerably simpler. Second, the abstract classes in the framework are specialized through object-
oriented inheritance to obtain efficient implementations for specific machines. Classes, such as Address-—
Translation, are subclassed in the nano-kernel into machine-specific ones, such as SparcTranslation
for the SPARC processor. Thus we avoid the penalty of having abstractions at too “high” a level.
SparcTranslations hold virtual address translations in a SPARC-specific way and no conversions are
required from a machine-independent to a machine-specific representation. While we do convert between
machine-dependent and machine-independent exception types, the cost of a conversion is on the order of
one function call.

We have attempted to verify the flexibility of our nano-kernel framework and the suitability of its
interface with ports to two highly dissimilar platforms. The first is a Unix emulation of a symmetric
shared memory multiprocessor, and the second is a native port to the Sun SPARCstation. The code in
the micro-levels of yChoices is shared, unchanged, between both ports. The measured overhead of an
explicit nano-kernel layer, compared to our previous Choices implementations on the same platforms, is
marginal.
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